
Flexbox
overview

Main & Cross Axis

The main axis is defined by the flex-
direction property, and the cross axis
runs perpendicular to it. These axes’s
run vertical and horizontal and have 4

possible values.

row | row-reverse | column | column-reverse

Row

Choose row or row-reverse and your
main axis will run along the row in the
inline direction. The cross axis will run

vertically or block direcion.

Column

Choose column or column-reverse and
your main axis will run from the top of
the page to the bottom — in the block

direction.

Cross Axis

The cross axis runs perpendicular to
the main axis, therefore if your flex-
direction (main axis) is set to row or

row-reverse the cross axis runs down
the columns.

row | row-reverse | column | column-reverse

Start & End Lines

main sizemain start main end

cross
size

cross
start

cross
end

main axis

cross axis

Flex Container

The parent element known as the “flex
container”. The direct children of the

flex container become flex items.

Flex Items

Once a flex container is set, flex items
will all line up in a row, using the size

of the content as their size in the main
axis.

Flexbox vs. Grid

Flexbox is a one-dimensional layout
method whereas Grid Layout is a two-

dimensional layout method.

Grid or Flexbox?

As a rule of thumb, if you are adding
widths to flex items in order to make
items in one row of a wrapped flex

container line up with the items above
them you really want two-dimensional

layout.

Grid Layout

In Grid Layout you do the majority of
sizing specification on the container,

setting up tracks and then placing
items into them.

Flex Layout

Flex items can be allowed to wrap but,
once they do so, each line becomes a

flex container of its own.

In flexbox, while you create a flex
container and set the direction at
that level, any control over item

sizing needs to happen on the items
themselves.

Writing Modes

Modern layout methods encompass a
range of writing modes and we cannot

assume that a line of text starts at
the top left of a document and run

towards the right hand side, with new
lines appearing one under the other.

Flex layout is based on “flex-flow
directions”.

Flexbox
Properties & Values

flex

This defines a flex container; inline or
block depending on the given value. It
enables a flex context for all its direct

children.

display: flex

flex-direction

Specifies how flex items are placed
in the flex container, by setting the

direction of the flex container’s main
axis. This determines the direction in

which flex items are laid out.

row | row-reverse | column | column-reverse

flex-wrap

Controls whether the flex container
is single-line or multi-line, and the
direction of the cross-axis, which

determines the direction new lines are
stacked in.

nowrap | wrap | wrap-reverse;

flex-flow

Shorthand for flex-direction and
flex-wrap properties, which together
define the flex container’s main and
cross axes. Default is row nowrap.

flex-flow: <‘flex-direction’> || <‘flex-wrap’>

justify-content

Aligns flex items along the main
axis of the current line of the flex

container. Typically it helps distribute
extra free space leftover when

either all the flex items on a line are
inflexible, or are flexible but have

reached their maximum size.
flex-start | flex-end | center | space-between space-around | space-evenly;

align-items

Defines the default behavior for how
flex items are laid out along the cross

axis on the current line.

stretch | flex-start | flex-end | center | baseline;

align-content

aligns a flex container’s lines within
the flex container when there is extra

space in the cross-axis, similar to
how justify-content aligns individual
items within the main-axis. Note, this

property has no effect on a single-line
flex container.

flex-start | flex-end | center | space-between space-around | stretch;

order

Flex items are, by default, displayed
and laid out in the same order as they

appear in the source document. The
order property can be used to change

this ordering.

order: <integer>; /* default is 0 */

flex-grow

Determines how much the flex item
will grow relative to the rest of the

flex items in the flex container when
positive free space is distributed.

When omitted, it is set to 1.

flex-shrink

Determines how much the flex item
will shrink relative to the rest of the
flex items in the flex container when
negative free space is distributed.

When omitted, it is set to 1.

flex-basis

This defines the default size of an
element before the remaining space
is distributed. It can be a length (e.g.

20%, 5rem, etc.) or a keyword.

flex-basis: <length> | auto; /* default auto */

flex

This is the shorthand for flex-grow,
flex-shrink and flex-basis combined.

The second and third parameters
(flex-shrink and flex-basis) are

optional. Default is 0 1 auto. The
short hand sets the other values

intelligently.

flex: none | [<’flex-grow’> <’flex-shrink’>? || <’flex-basis’>]

align-self

This allows the default alignment (or
the one specified by align-items) to be

overridden for individual flex items.
Note that float, clear and vertical-
align have no effect on a flex item.

align-self: auto | flex-start | flex-end | center | baseline | stretch;

justify-content
values

flex-start

flex-end

center

space-between

space-around

align-items:
flex-start

flex-start

align-items:
flex-end

flex-end

align-items:
center

center

align-items:
stretch

stretch

align-items:
stretch

stretch

align-items:
baseline

all the words are on the same line

baseline

align-content:
flex-start

flex-start

align-content:
flex-end

flex-end

align-content:
center

center

align-content:
space-between

space-between

align-content:
space-around

space-between

align-content:
stretch

stretch

justify-content:
flex-start

flex-start

justify-content:
flex-end

flex-end

justify-content:
center

center

justify-content:
space-between

space-between

justify-content:
space-around

space-between

Note that visually the spaces aren’t equal, since all the items have
equal space on both sides. The first item will have one unit of space
against the container edge, but two units of space between the next

item because that next item has its own spacing that applies.

justify-content:
space-evenly

space-evenly

items are distributed so that the spacing between any two items (and
the space to the edges) is equal.

